
Advanced Algorithmics

Thomas Nowak

April 27, 2025

These are partial lecture notes from the undergraduate course Advanced
Algorithmics, given by Serge Haddad and Thomas Nowak at ENS Paris-Saclay
in the academic year 2024–2025. This document will inevitably contain some
errors. If you find any, I will be grateful and happy to hear from you. You can
reach me by email at thomas@thomasnowak.net.

Thomas Nowak,
Spring Term: 2024–2025,

Last Update: April 27, 2025,
ENS Paris-Saclay

mailto:thomas@thomasnowak.net

Contents

Lecture 10: Algorithms and Probability I 1
10.1 Expected Runtime of Quicksort 1
10.2 The Secretary Problem . 2
10.3 The Online Paging Problem . 3

Lecture 11: Algorithms and Probability II 7
11.1 Skip Lists . 7
11.2 Universal Hashing . 10

Lecture 12: Distributed Algorithms I 14
12.1 Modeling: Synchronous Message Passing 14
12.2 Breadth-First Search . 15
12.3 Maximal Independent Set . 15
12.4 Coloring of Paths . 17

Lecture 13: Distributed Algorithms II 19
13.1 Modeling: Asynchronous Message Passing 19
13.2 Breadth-First Search . 20
13.3 Modeling: Process Faults . 21
13.4 Impossibility of Consensus in Asynchronous Systems with Pro-

cess Faults . 21
13.5 Asynchronous Rounds . 23

Lecture 14: Distributed Algorithms III 25
14.1 Approximate Consensus . 25
14.2 Randomized Consensus . 27
14.3 Byzantine Processes . 28

iii

iv

Thomas Nowak Lecture 10: Algorithms and Probability I

April 7, 2025

Lecture 10: Algorithms and Probability I

We start our discussion of randomization in algorithms by going through a num-
ber of representative examples that can be studied either by using only elementary
probability-theoretic facts or by looking solely at the expected value of certain quan-
tities. The most important technical fact about the expected value that we need is
that it is linear: E(X + Y) = EX +EY . This equality holds even if X and Y are not
independent.

10.1 Expected Runtime of Quicksort

We recall the quicksort algorithm to sort the list S of distinct elements from a totally
ordered universe:

1. If S has at most one element, return S.

2. Choose a pivot element s ∈ S.

3. Compare each element of S to s and construct lists S1 and S2 with the elements
that are less than, respectively greater than, s.

4. Recursively sort S1 and S2.

5. Return S1, x, S2.

The deterministic version that chooses the first element of the list as the pivot
element has the worst-case running time Ω(n2) for lists of length n. If we make
the choice in Step 2 an independent uniformly random one, this yields a randomized
algorithm. To upper-bound the runtime of randomized quicksort, we first note that it
is asymptotically dominated by the number of comparisons. We can then bound the
expected number of comparisons:

Theorem 10.1. The expected number of comparisons of randomized quicksort on
a list of length n is 2n logn+O(n).

Proof. Let x1, . . . , xn be the input values and y1, . . . , yn the same values in in-
creasing order. Let X be the number of comparisons, and let Xij be the indicator
variable for whether yi and yj are ever compared (for i < j).

Set Yij = {yi, . . . , yj}. We have Xij = 1 if and only if yi or yj is the first
pivot element selected from Yij . We thus have:

EX =

n−1∑
i=1

n∑
j=i+1

EXij =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n∑
k=2

n+1−k∑
i=1

2

k

=

n∑
k=2

(n+ 1− k)
2

k
= (2n+ 2)

n∑
k=1

1

k
− 4n = 2n logn+O(n)

Here, we used Lemma 10.1 in the last step.

The following lemma is useful in many situations. It corresponds to a special case
of the Euler–Maclaurin summation formula. Its basic message is that oftentimes it is
possible to exchange an integral for a sum.

1

Thomas Nowak Lecture 10: Algorithms and Probability I

Lemma 10.1. For all n ∈ N, we have log(n+ 1) ≤ Hn ≤ 1 + logn.

Proof. For the upper bound, we calculate:

Hn =

n∑
i=1

1

i
= 1 +

n∑
i=2

1

i

∫ i

i−1

1 dx = 1 +

n∑
i=2

∫ i

i−1

1

i
dx ≤ 1 +

n∑
i=2

∫ i

i−1

1

x
dx

= 1 +

∫ n

1

1

x
dx = 1 + logn

For the lower bound, we note:

Hn =

n∑
i=1

1

i
=

n∑
i=1

1

i

∫ i+1

i

1 dx =

n∑
i=1

∫ i+1

i

1

i
dx ≥

n∑
i=1

∫ i+1

i

1

x
dx

=

∫ n+1

1

1

x
dx = log(n+ 1)

This concludes the proof.

10.2 The Secretary Problem

In the secretary problem, we seek to hire a new secretary. We must decide in an online
fashion: we interview candidates sequentially, and once we pass on a candidate, we
cannot return to that decision. We suppose each of the n candidates has a score,
which we can perfectly assess during the interview. We do not assume any a priori
knowledge of the distribution of the scores. Our goal is to pick the candidate with
the highest score. We assume all candidate scores x1, x2, . . . , xn ∈ R are distinct, and
that the order of the candidates is uniformly random, i.e., all permutations are equally
likely.

At the ith step, the algorithm has seen the scores x1, . . . , xi of the first i candidates.
It turns out that the following class of algorithms is optimal: Reject the first m
candidates, but keep track of their maximum score. Then, for each of the candidates
m+ 1, . . . , n, hire the first candidate whose score exceeds all previously seen scores.

For this class of algorithms, we now want to determine the best parameter m, i.e.,
the one that yields the highest probability of hiring the best candidate. Denote by Ei
the event that the ith candidate has the highest score and that we hire them. For
i ≤ m, we have P(Ei) = 0, since we do not hire any of the first m candidates. For
i = m + 1, we have P(Em+1) = 1/n, since we hire the highest-scoring candidate in
position m + 1 only if they happen to be there. More generally, for positions i > m,
we have

P(Ei) = P(Hi | Bi) ·P(Bi)
by Bayes’ theorem, where Hi is the event that we hire the ith candidate and Bi is the
event that the best candidate is in position i. Due to the uniformity assumption, we
have P(Bi) = 1/n. Now, to calculate P(Hi | Bi), we note that we hire candidate i
if and only if we did not hire anyone before them. This happens precisely when the
highest score among the first i−1 candidates occurred within the first block of m. We
thus have P(Hi | Bi) = m/(i− 1). In summary:

P(Ei) =

{
0 if i ≤ m
m
i−1

· 1
n

otherwise

2

Thomas Nowak Lecture 10: Algorithms and Probability I

Hence, letting E denote the event that we hire the best candidate, we obtain:

P(E) =
m

n

n∑
i=m+1

1

i− 1
=

m

n
(Hn−1 −Hm−1)

As in the proof of Lemma 10.1, we can show that Hn−1 −Hm−1 ≥ logn− logm, so

P(E) ≥ m

n
(logn− logm) . (1)

Differentiating this lower bound gives

d

dm

m

n
(logn− logm) =

1

n
(logn− logm)− 1

n
=

logn− logm− 1

n
,

which is zero if and only if logm = logn − 1, i.e., m = n/e. Plugging this into (1)
gives P(E) ≥ 1/e ≈ 37%.

We did make some approximations here: For one, we optimized a lower bound
on P(E) rather than the probability itself. Also, we cannot choose m = n/e exactly
since this is not an integer, so we must round, e.g., to m = ⌊n/e⌋. In both cases,
we introduce small errors, but asymptotically we remain optimal: The lower bound is
tight since we also have the upper bound P(E) ≤ m

n
(log(n − 1) − log(m − 1)) ∼ 1/e

as n → ∞. As for rounding, note:

⌊n/e⌋
n

log
n

⌊n/e⌋ ≥ (n− e)/e

n
log

n

n/e
=
(
1− e

n

) 1

e
∼ 1

e

as n → ∞.
We also left open why this class of algorithms is optimal. Note that whenever an

optimal algorithm chooses to hire candidate i, that candidate must be the best seen
so far. Otherwise, we forgo a chance to hire the best candidate. Moreover, since we
lack information about future scores, we always have P(Bi | Hi) = i/n for optimal
algorithms. Since this increases with i, once we begin considering hiring, we must
continue to do so. This implies that the choice of m depends only on n.

Thus, we conclude:

Theorem 10.2. An optimal algorithm for the secretary problem has an asymp-
totic success probability of 1/e.

10.3 The Online Paging Problem

In the paging problem, we are tasked with managing a cache of size k. We receive
a request sequence ρ1, ρ2, . . . , ρn of pages in a much larger (virtually infinite) main
memory. At each request, if the requested page is not currently in the cache, we
can choose which of the pages to evict to make space for the newly requested one.
The cache is initially populated with some set of pages. Popular deterministic online
algorithms for this problem are LRU (last recently used), FIFO(first-in first-out), and
LFU (least frequently used). In contrast to online algorithms, offline algorithms can
look at the complete request sequence—in the past as well as into the future—for each
decision.

We assume that each cache miss incurs a constant cost, which we normalize to
being 1. Formally, for any paging algorithm A and each request sequence ρ1, . . . , ρn,

3

Thomas Nowak Lecture 10: Algorithms and Probability I

we define fA(ρ1, . . . , ρn) to be the number of cache misses when executing A with the
request sequence ρ1, . . . , ρn. For a randomized algorithm A, this is a random variable.

Since we can always choose a request sequence with fA(ρ1, . . . , ρn) = n by re-
questing n different pages, it does not make much sense to look at fA in the absolute.
Rather, we will compare to the theoretical optimum:

Definition 10.1

Let O be an optimal offline algorithm and let c ∈ R+. A (randomized) algo-
rithm A is c-competitive if there is some b ∈ R+ such that

EfA(ρ1, . . . , ρn) ≤ cfO(ρ1, . . . , ρn) + b

for all n and all request sequences ρ1, . . . , ρn.

It turns out that randomization enables an exponential improvement in the com-
petitivity ratio c. To show this, we first start with the lower bound for for deterministic
algorithms:

Theorem 10.3. No deterministic online algorithm is c-competitive for c < k.

Proof. We construct an infinite request sequence of k + 1 pages in the main
memory, i.e., ρi ∈ {1, . . . , k + 1} for all i ∈ N. We do this in an inductive
fashion: Initially, we populate the cache with pages 1, . . . , k. Then, we request
the unique page ρi+1 that is not in the cache when executing A on the request
sequence ρ1, . . . , ρi.

For analysis purposes, we introduce the notion of a round in the request
sequence. A round is a maximal subsequence in which at most k different pages
are requested. The first round is ρ1, . . . , ρk.

An optimal offline algorithm misses at most once in a round: Since at most k
different pages are requested, there is one that is not requested. The optimal
algorithm can thus choose to evict the non-requested page at the first cache
miss. The online algorithm A, on the other hand, misses at least k times (since
it misses at every request).

To conclude, we distinguish two cases. If there are infinitely many rounds,
then

fA(ρ1, . . . , ρnr)

fO(ρ1, . . . , ρnr)
≥ rk

r
= k

where nr is the last index of round number r. This is a contradiction to A being
c-competitive with c < k. In the second case, there is only a finite number R ∈ N
of rounds. Since fA(ρ1, . . . , ρn) = n by construction and fO(ρ1, . . . , ρn) ≤ R for
all n ∈ N, we have

lim
n→∞

fA(ρ1, . . . , ρn)

fO(ρ1, . . . , ρn)
≥ lim
n→∞

n

R
= ∞ ,

which is in contradiction to A being c-competitive for any c.

When considering competitivity of randomized algorithms, multiple different defi-
nitions are possible. They differ in the amount of information that can be accessed to
construct the request sequence. The procedure that constructs this sequence if often

4

Thomas Nowak Lecture 10: Algorithms and Probability I

referred to as an adversary. For now, we restrict ourselves to oblivious adversaries, who
have access to the source code of the algorithm, but not to any of the random choices
made during execution. Adversaries that can do that are usually called adaptive.

In the Marker algorithm, each cache location has a marker bit associated with it.
It proceeds in rounds. At the start of each round, all marker bits are set to zero.
When a request results in a cache hit, the marker bit of that location is set to one.
When a request results in a cache miss, a random unmarked location is evicted, the
requested page is placed in that location, and the location’s marker bit is set to one.
The current round ends when all location’s marker bits are set to one.

Theorem 10.4. There exists a randomized online algorithm that is 2(1 + Hk)-
competitive against oblivious adversaries.

Proof. We use the Marker algorithm. Let ρ1, . . . , ρn be a request sequence.
Let R be the number of rounds of the Marker algorithm with this request

sequence. Call a page fresh in round r if it was newly added to the cache by the
Marker algorithm in round r. Let fr be the number of fresh cache locations in
round r.

If r ≥ 2, during rounds r − 1 and r, there are at least k + fr different page
requests. Of these, at least fr are cache misses in any algorithm, in particular the
optimal one. Setting ∆O(0) = 0 and ∆O(r) = fO(ρ1, . . . , ρnr)−fO(ρ1, . . . , ρnr−1)
where nr denotes the last index of round r ≥ 1, we have ∆O(r−1)+∆O(r) ≥ fr
for all r ≥ 1. We showed this for r ≥ 2, but it is also true for r = 1 since both O
and A start with the same pages in the cache. Hence:

2fO(ρ1, . . . , ρn) ≥ 2

R∑
r=1

∆O(r) ≥
R−1∑
r=0

∆O(r) +

R∑
r=1

∆O(r)

=

R∑
r=1

(∆O(r − 1) + ∆O(r)) ≥
R∑
r=1

fr

(2)

We now turn to upper-bounding the expected number of cache misses of al-
gorithm A. Let us focus on a given round r and write ∆A(r) = fA(ρ1, . . . , ρnr)−
fA(ρ1, . . . , ρnr−1) for the number of cache misses in that round. There are ex-
actly fr cache misses due to requests for fresh pages. Let i1, . . . , ik−fr be the
requested non-fresh pages, in the order of the first request to them. Let Xℓ be
the indicator variable that is 1 if and only if the first access to iℓ is a cache miss.
The expected number of cache misses is:

E∆A(r) = fr +

k−fr∑
ℓ=1

EXℓ = fr +

k−fr∑
ℓ=1

P(Xℓ = 1) (3)

To bound P(Xℓ = 1), denote by γ the number of fresh pages in the cache
before the first access to iℓ. The page iℓ might have been replaced by a previously
accessed page. Compared to the start of the round, exactly γ pages are different.
We know that ℓ − 1 of the pages have to be the same, namely i1, . . . , iℓ−1, but

5

Thomas Nowak Lecture 10: Algorithms and Probability I

we don’t know the fate of iℓ. We thus have:

P(Xℓ = 1) =
γ

k − ℓ+ 1
≤ fr

k − ℓ+ 1
(4)

Combining (3) and (4), the expected number of cache misses in round r is at
most

E∆A(r) = fr

(
1 +

k−fr∑
ℓ=1

1

k − ℓ+ 1

)
≤ fr(1 +Hk) . (5)

Now, combining (2) and (5) gives

EfA(ρ1, . . . , ρn) ≤ (1 +Hk)

R∑
r=1

fr ≤ 2(1 +Hk)fO(ρ1, . . . , ρn)

and concludes the proof.

The Marker algorithm is almost optimal. It can be proved that no randomized
online algorithm is c-competitive against oblivious adversaries if c < Hk.

6

Thomas Nowak Lecture 11: Algorithms and Probability II

April 14, 2025

Lecture 11: Algorithms and Probability II

We now turn to more involved analysis techniques than elementary probability and
expected values. In terms of systems under consideration, we focus on randomized
data structures.

11.1 Skip Lists

A skip list is a collection of ordered doubly linked lists L1, L2, . . . , Lr such that
Vals(Lr) = ∅ and Vals(Li) ⊆ Vals(Li−1) for all 1 < i ≤ r where Vals(L) denotes
the set of values in the linked list L. In addition to the horizontal links inside of its
linked list Li, each node also has a vertical link to node in Li−1 that contains the same
value. Each linked list Li additionally contains a start node with value −∞ and an
end node with value +∞. The skip list encodes the set Vals(L1) of values. The linked
list Li is called the ith level of the skip list.

−∞

−∞

−∞

−∞

11 15 17 28 31 55 56 61 +∞

+∞

+∞

+∞

31

31

11 15 55 56

Figure 1: A skip list with r = 4 levels containing the values Vals(L1) =
{11, 15, 17, 28, 31, 55, 56, 61}.

For a value x in the skip list, we denote by h(x) = max{i | x ∈ Vals(Li)} its height,
i.e., highest level that contains x. Since Vals(Lr) = ∅, we have h(x) ≤ r − 1 for all
values x of the skip list. On the other hand, we have the expression r = 1+max{h(x) |
x ∈ Vals(L1)} for the number of levels.

An empty skip list has a single level. Starting from an initially empty skip list,
this data structure supports three operations:

• search(x): returns true if x is a value in the skip list and false otherwise. The
search starts at the −∞ node of Lr. In each iteration, we look at the next node
in the current level. If its value is equal to x, we return true. If its value is
strictly smaller than x, then we advance to the next node in current level. If its
value is strictly larger than x, then we drop down one level if possible. If it’s
not possible to drop down a level, then we return false.

• insert(x): inserts value x into the skip list if it’s not already in the list. We first
use search(x) to find the greatest lower bound and the least upper bound on x in
each level. If x is already in the list, we do nothing more and return. Otherwise,
we choose a random height h(x) and insert x into the lists L1, . . . , Lh(x) at the

7

Thomas Nowak Lecture 11: Algorithms and Probability II

correct location and add the vertical links. If necessary, i.e., if h(x) ≥ r, we
create new empty levels before inserting x into them.

• delete(x): deletes value x if it’s in the list. We first use search(x) to find look
for x in each level. If x is not in any level, we do nothing more and return.
Otherwise, we delete x from each level in which we found it. We then delete all
empty levels except the top level.

In the description of the operations, we left one thing unspecified: how to choose
the random height h(x) in the insertion operation? The most often employed method
is to have h(x) be a geometric random variable with parameter p = 1/2. That is, the
number of fair coin flips until we get one tails. During the analysis of the runtime of
the operations, we will see why this is a good choice.

As a warm-up to analyzing the asymptotic performance of the operations, we show
that the number of levels of a skip list of n values is O(logn) with high probability.

The notion “with high probability” is very common, but doesn’t always have the
same meaning. In its most basic meaning it says that the error probability decreases to
zero with 1/nα for some α > 0 as n → ∞. Of course, this presupposes the parameter n
to measure the size of the system under consideration in some meaningful way. The
most useful version of “Xn = O(f(n)) with high probability” is “for all α > 0 there
exist c > 0 and d > 0 such that P

(
Xn > cf(n)

)
≤ d/nα for all (large enough) n”.

Definitions of “with high probability” that allow a free choice of the exponent α have
the advantage of being composable much more easily.

Lemma 11.1. Let α > 1. In a skip list of n values, we have P(r > α log2 n) ≤
4/nα−1 for the number r of levels.

Proof. The random variables h(x) for x ∈ Vals(L1) are i.i.d. geometric with
parameter p = 1/2. This is true no matter the order of the preceding operations:
the height chosen during the insertion of each of the currently present values is
independent of all previous and later operations.

Let us write {x1, x2, . . . , xn} for the set of values in the skip list. For the
number of levels, we already established the formula r = 1 + max{h(xj) | 1 ≤
j ≤ n}. We thus have

P(r > α logn) = P
(
1 + max{h(xj) | 1 ≤ j ≤ n} > α log2 n

)
= P

(
∃1 ≤ j ≤ n : h(xj) > α log2 n− 1

)
≤ n ·P

(
h(x1) > α log2 n− 1

) (6)

where we used the union bound P(E1 ∪ · · · ∪ En) ≤ P(E1) + · · ·+P(En).
Now, using the specific distribution of the height h(x1), we have P

(
h(x1) >

t
)
= (1 − p)t = 1/2t for every nonnegative integer t. From this, we can deduce

an bound that is true for all real numbers t ≥ 1:

P
(
h(x1) > t− 1

)
= P

(
h(x1) > ⌊t⌋ − 1

)
= 1/2⌊t⌋−1 ≤ 1/2t−2

Here, we used that n > x if and only if n > ⌊x⌋ for all integers n and real
numbers x, and the fact that ⌊t⌋ − 1 ≥ t − 2. We also see that the bound
trivially remains true for the remaining values of t, i.e., for t < 1 since then
1/2t−2 > 1/2−1 = 2, which is bigger than any probability.

8

Thomas Nowak Lecture 11: Algorithms and Probability II

Plugging in t = α log2 n, we get:

P
(
h(x1) > α log2 n− 1

)
≤ 1/2α log2 n−2 = 4/nα

Combining this with (6) now concludes the proof.

For the complete analysis of the time complexity of the three operations of a skip
list, we will need the arguably most important inequality for the analysis of randomized
algorithms, the Chernoff bound. It is an upper bound on the probability of a sum of
Bernoulli random variables being far from its expected value.

Theorem 11.1 (Chernoff bound). Let X1, X2, . . . , Xm be mutually independent
0/1 random variables and let X =

∑m
k=1 Xk. Then

P
(
X ≤ (1− δ)µ

)
≤ e−µδ

2/2

for all 0 < δ < 1 where µ = EX.

We can now prove that the search operation takes only logarithmic time with high
probability. Since the time complexity of the insertion and deletion operations are
dominated by the search, we get the same result for all three operations of the skip
list.

Theorem 11.2. The time complexity of search(x) in a skip list of n values is
O(logn) with high probability.

Proof. We bound the number of iterations of the search operation, which asymp-
totically dominates the time complexity. Independently of whether the searched
value x was found, we consider the node visited in the last iteration and work
our way backwards to the initial −∞ node of level Lr.

The claimed bound of m = O(logn) on the number m if iterations comes
from the symmetry of following vertical or horizontal links due to the choice of
the fair parameter p = 1/2 for the heights, and the already established height
bound from Lemma 11.1. Once we reach the highest level Lr, we are back at the
node of the first iteration.

We are thus done if we find a constant d such that a sequence of at least
m = d logn fair coin flips (iterations) has at least α log2 n = c logn heads (vertical
moves). By Theorem 11.1, the probability of this event is upper-bounded by

P
(
X ≤ (1− δ)

m

2

)
≤ e−mδ

2/4

where (1 − δ)m
2

= c logn. Solving for δ, we get δ = 1 − 2c/d. Choosing d = 4c,
we get δ = 1/2 and thus:

P
(
≤ c logn vertical moves

)
≤ P (X ≤ c logn) ≤ e−d logn = e−4c logn

9

Thomas Nowak Lecture 11: Algorithms and Probability II

Now, putting things together, we have:

P (≥ d logn iterations) ≤ P (≤ c logn vertical moves) +P (r > c logn)

≤ 1

n4c
+

4

nα−1

For any α > 1, we have c = α/ log 2 > α and thus:

P (≥ d logn iterations) ≤ 1

n4α
+

4

nα
≤ 5

nα

This concludes the proof.

11.2 Universal Hashing

Consider a universe U of keys of items that we want to store in a hash table. A hash
function is a function h : U → V where V = {0, 1, . . . ,m − 1} and |U | > m. In the
worst case, an n-element hash table can take Ω(n) time to search for an element; for
example if all elements are hashed to the same value and end up in the same linked
list. This is true no matter the hash function chosen. The idea of universal hashing is
to chose a random hash function to circumvent the deterministic worst case. For that,
we need to look at families of hash functions from which we will make the random
choice.

Definition 11.2

A family H of hash functions h : U → V is universal if

P
(
h(x) = h(y)

)
≤ 1

m

for all x, y ∈ U with x ̸= y where the hash function h is chosen uniformly at
random in H.

The use of universal families of hash functions allows to cut down on the length of
the linked lists in the hash table. Here is a result on the expected number of collisions:

Theorem 11.3. In an n-element hash table S with the hash function h chosen
uniformly at random from a universal family, for every element x ∈ U of the
universe, we have:

E |{y ∈ S | h(x) = h(y)}| ≤

{
n/m if x ̸∈ S

1 + (n− 1)/m if x ∈ S

Proof. Let y1, y2, . . . , yn be the elements of S and let Xi be the indicator variable
of the event h(yi) = h(x). Since H is universal, we have EXi = P(Xi = 1) ≤
1/m if x ̸= yi. Now, if x ̸∈ S, then:

E

n∑
i=1

Xi =

n∑
i=1

P(Xi = 1) ≤ n

m

10

Thomas Nowak Lecture 11: Algorithms and Probability II

On the other hand, if x = yj for some j, then

E

n∑
i=1

Xi =

n∑
i=1

P(Xi = 1) = 1 +
∑

1≤i≤n
i̸=j

P(Xi = 1) ≤ 1 +
n− 1

m
,

which concludes the proof.

Universal families of hash functions are clearly useful, but we have not yet answered
the question whether any actually exists. This question is quite easily answered in the
affirmative via the probabilistic method. A harder question is whether we can find a
universal family that we can easily sample from and whose hash functions are simple
to compute. Fortunately, the answer to this question is also yes. There are a few
constructions known, here is one of them:

Let us assume that U = {0, 1, . . . , u−1} and choose a prime number p ≥ u. Then,
for integers 0 ≤ a, b < p, we define the hash function

ha,b(x) =
(
(ax+ b) mod p

)
mod m

and define the family H = {ha,b | 0 ≤ a, b < p}.

Theorem 11.4. The family H is universal.

Proof. Let x, y ∈ U with x ̸= y.
For every pair (u, v) ∈ {0, . . . , p − 1}2 with u ̸= v, there is a unique pair

(a, b) ∈ {1, . . . , p − 1} × {0, . . . , p − 1} with ax + b ≡ u mod p and ay + b ≡ v
mod p. In fact, we have the formulas a ≡ (v−u)·(y−x)−1 mod p and b ≡ u−ax
mod p.

It thus suffices to upper bound the number of pairs (u, v) with u ̸≡ v mod p
but u ≡ v mod m. If we fix a u ∈ {0, . . . , p − 1}, then there are at most
⌈p/m⌉ − 1 ≤ (p − 1)/m possible values for v. In total, we thus have at most
p(p−1)/m such pairs. Since each pair corresponds to a unique hash function ha,b
in H, we have

P
(
ha,b(x) = ha,b(y)

)
≤ p(p− 1)/m

p(p− 1)
=

1

m
,

which shows that H is a universal family.

We now turn to the question whether we can completely avoid collisions. In classi-
cal hash tables, it turns out that can only be guaranteed when m ≥ n2, which leads to
a prohibitive space complexity of Ω(n2). It is, however, possible to get rid of collisions
if we introduce a second level of hashing for each slot. This is a technique called per-
fect hashing and is able to guarantee a worst-case time complexity of searches of O(1)
while keeping an O(n) space complexity. We will analyze the static variant, which
does not support insertions or deletions, but dynamic variants also exist.

For the analysis of perfect hashing, we use Markov’s inequality, which can be quite
loose, but is often enough to prove asymptotic probability bounds. It is also the basis
for more advanced bounds, including Chebyshev’s inequality and the Chernoff bound.

Theorem 11.5 (Markov’s inequality). Let X be a nonnegative random variable

11

Thomas Nowak Lecture 11: Algorithms and Probability II

and let a > 0. Then:

P(X ≥ a) ≤ EX

a

Lemma 11.2. In an n-element hash table S with hash function h chosen uniformly
at random from a universal family, if m ≥ n2, then the probability of having no
collisions is at least 1/2.

Proof. Let y1, y2, . . . , yn be the elements of S and let Xi,j be the indicator vari-
able of the event h(yi) = h(hj). Defining X to be the number of collisions, we
have:

EX =
∑

1≤i<j≤n

P(Xi,j = 1) ≤ n(n− 1)

2

1

m
≤ n2

2m

Now, applying Markov’s inequality (Theorem 11.5) with a = n2/m concludes
the proof since n2/m ≤ 1 by assumption.

The construction of a 2-level perfect hash table is as follows:

1. Pick a hash function h1 ∈ Hm uniformly at random where m = n. Denote by ℓj
the number of elements hashed to value j. If

∑m
j=1 ℓ

2
j > cn, then pick another

hash function and check again.

2. For every j ∈ {0, . . . ,m − 1}, pick a hash function h2,j uniformly at random
from Hmj where mj = ℓ2j . If there is a conflict for one of the hash functions h2,j ,
pick another and check for conflicts again.

If this algorithm terminates, the perfect hash table allows searches in O(1) time
since there are no conflicts in the second level. Moreover, its space complexity is
O(n) +

∑m
j=1 O(ℓ2j) = O(n).

Theorem 11.6. The construction of a perfect hash table terminates in time
O(n log2 n) with high probability.

Proof. Picking and checking a hash function in Hm can be done in time O(n).
Denoting by Xi,j the indicator function of the event h1(yi) = hi(yj), we have

E

m−1∑
j=0

ℓ2j =
n∑
i=1

n∑
j=1

EXi,j ≤ n+ 2
n(n− 1)

2

1

m
≤ c

2
n

for some constant c > 0. Application of Markov’s inequality (Theorem 11.5) now
shows P

(∑m−1
j=0 ℓ2j > cn

)
≤ 1/2. We can thus see the picks of h1 as i.i.d. coin

flips with success probability p ≥ 1/2. The number of coin flips until the first
success is O(logn) with high probability.

Picking and checking each h2,j can be done in time O(ℓj). An application of
the Chernoff bound (Theorem 11.1) shows ℓj = O(logn) with high probability.
Picking one set of h2,j thus takes time O(n logn) with high probability. As
above, Lemma 11.2 shows that we need to pick the h2,j at most O(logn) times
with high probability. This means that constructing the second level is done in

12

Thomas Nowak Lecture 11: Algorithms and Probability II

O(n log2 n) time with high probability.

13

Thomas Nowak Lecture 12: Distributed Algorithms I

April 28, 2025

Lecture 12: Distributed Algorithms I

The analysis of distributed systems is of high importance due to the ubiquity of systems
in which communication is necessary: from the Internet all the way to systems-on-
chip. One of the most difficult tasks in this analysis is that of modeling the system.
In contrast to centralized computation, no single standard model exists and a small
change in the model assumptions can lead to widely different properties.

12.1 Modeling: Synchronous Message Passing

One of the simplest models of distributed computation is that of synchronous message
passing. In this model, processes are assumed to repeatedly execute rounds in a lock-
step fashion. The steps in a round are send–receive–compute: first all processes send
a set of messages, then they receive the message just sent, and then they perform a
local computation. Most commonly, the local processes are assumed to be computa-
tionally unbounded. This assumption is made since local computations are rarely very
heavy in the type of algorithms normally studied. An exception is the assumption of
unbreakable cryptographic primitives, for which a Turing machine model would not
be very useful either.

Formally, a distributed system in this model has:

• a directed or undirected graph G = (V,E)

• a message alphabet M with ⊥ ̸∈ M

• for every process p ∈ V :

– a set Statesp of local states

– a nonempty set Startp ⊆ Statesp of initial states

– a message-generating function Msgsp : Statesp ×Outp → M ∪ {⊥}
– a state-transition function Transp : Statesp × (M ∪ {⊥})Inp → Statesp

We construct an execution as follows. We initialize the local state of every process p
to some initial state in Startp. Then, in each round r ≥ 1:

1. Apply the message-generating functions Msgsp to the current local state of each
process p to find the message sent over every link (p, q).

2. Gather all messages sent to each process q and apply the state-transition function
Transq to find the next local state.

The main complexity measures are time and communication complexity. Time
complexity is measured in the number of rounds until the desired state. Communica-
tion complexity is most often measured in total number of messages sent. Sometimes
it is also measured in the total number of bits of messages sent.

A desirable property of our algorithms is that they actually halt, i.e., stop exe-
cuting. Formally, a halting state is one in which no messages are sent and no state
transition from the halting state is possible.

Models both with and without process identifiers exist. In models without process
identifiers, the processes know their neighbors only by their port numbers. If they
are assumed, process identifiers take the form of unique identifiers (UIDs), which are
unique in the graph and are often assumed to be encoded in O(logn) bits.

If we allow randomized algorithms, we allow the state-transition function to return
a probability distribution on the set of states instead of a single state.

14

Thomas Nowak Lecture 12: Distributed Algorithms I

12.2 Breadth-First Search

The problem of constructing a distributed breadth-first search (BFS) tree can be
formalized as follows: each process maintains a parent variable, which can hold the
UID of a process. A unique root process should encode itself as its parent. Any other
process should encode its parent in the BFS tree rooted at the root.

For this problem, we assume a connected undirected graph G. We assume the ex-
istence of process UIDs and the existence of a unique distinguished leader process p0,
but specific knowledge of the graph G (e.g., number of nodes, diameter). The as-
sumption of the existence of a leader process might seem strong, but a simple flooding
algorithm can determine a leader in O(diam(G)) rounds.

The SynchBFS algorithm has some set of processes be marked at each round.
Initially, only the leader process p0 is marked and all parent variables are null except
for the leader process, which has itself set as its parent. In every round, each process
that became marked in the last round sends a search message to all its neighbors.
Then, every unmarked process that received a search message from one of its neighbors
chooses one of these neighbors to be its parent and becomes marked.

Theorem 12.1. The SynchBFS algorithm constructs a BFS tree in O(diam(G))
rounds and sends O(|E|) messages.

Proof. We have the following invariant at the end of every round r ≥ 1, which
can be proved by induction on r: for every 1 ≤ d ≤ r, every process at distance d
from p0 is marked and has its parent set to a process at distance d− 1 from p0.

The correctness of the constructed tree and the bound on the time complexity
then follow from this invariant at round r = diam(G). The message complexity
bound follows from the fact that every process p sends exactly deg(p) messages.
The total number of messages is thus∑

p∈V

deg(p) = 2|E| ,

which concludes the proof.

Once we constructed a BFS, we can broadcast messages through the tree in
O(diam(G)) rounds. We can even add a routing table to the nodes to reduce the
message complexity to O(diam(G)) for each point-to-point message. This is obvious
for messages sent by the root process, but every other process can first send the to-be-
sent message to the root, which will then forward it to the right process. Termination
can be implemented since we can locally detect whether a process is a leaf in the BFS
tree: in the round following their search message, they don’t receive another search
message. A termination signal can then be propagated up the BFS tree.

12.3 Maximal Independent Set

We now turn to the problem of constructing a maximal independent set (MIS). An
independent set is a set of vertices that does not contain any two neighbors. We
formalize a distributed MIS construction by requiring the existence of a local Boolean
variable that indicates whether the process is inside the MIS or not.

We again assume a connected undirected graph G. The algorithm that we will
study does not need UIDs or any other knowledge of the graph G. It does, however,

15

Thomas Nowak Lecture 12: Distributed Algorithms I

work with real-valued variables. To achieve a finite bit complexity, one can show that
using O(logn) bits of the real numbers is enough. To utilize this, one needs knowledge
of n, or of an upper bound on n.

In the LubyMIS algorithm, each process maintains a list of remaining neighbors,
initialized to all its neighbors in the graph. It proceeds in phases of three rounds each:

1. In the first round, each active process sends a uniformly chosen random value in
the interval [0, 1] to all neighbors. Each active process then determines whether
it is a winner, i.e., whether it has a value strictly larger than all its neighbors.

2. In the second round, each winner notifies its neighbors of the fact that they are
losers.

3. In the third round, each winner joins the MIS. Then all winners and all losers
stop executing the algorithm and become inactive. All neighbors of losers remove
the losers from their list of remaining neighbors.

For analysis purposes, we define a sequence G0, G1, . . . of subgraphs of G. The
graph Gϕ = (Vϕ, Eϕ) is the subgraph of G induced by the set of active processes at
the end of phase ϕ ≥ 1. Once all processes became inactive, the graphs Gϕ are empty.
Initially, we set G0 = G.

Lemma 12.1. The expected number of edges removed in phase ϕ is at least
|Eϕ−1|/2.

Proof. We say that process p single-handedly kills edge {q, r} from q’s side if p
is a neighbor of q and process p’s value is maximal among those of N(p)∪N(q).

Now consider any edge {p, q} ∈ Eϕ−1. The probability that process p’s value
is maximal among the values in N(p)∪N(q) is at least 1

deg(p)+deg(q)
. In this case,

process p single-handedly kills deg(q) edges from q’s side. Each edge in Eϕ−1

can be single-handedly killed at most twice; once from each side. The expected
number X of edges removed in phase ϕ is:

EX ≥
∑

{p,q}∈Eϕ−1

1

2

(
deg(p)

deg(p) + deg(q)
+

deg(q)

deg(p) + deg(q)

)
=

|Eϕ−1|
2

This concludes the proof.

Theorem 12.2. If the LubyMIS algorithm terminates, it has constructed an MIS.
Furthermore, the expected number of rounds until termination is O(logn).

Proof. Let Iϕ be the set of processes that joined the constructed MIS in phase ϕ
and let Jϕ =

⋃ϕ
ψ=1 Iψ be the constructed MIS up to the end of phase ϕ. We

have the following invariant at the end of every phase ϕ ≥ 1: The set Jϕ is an
independent set in G. Furthermore, the processes that have been removed in
phase ϕ are those processes in Jϕ ∪N(Jϕ) that have not already been removed
in earlier phases, which means that Vϕ = V \ (Jϕ ∪N(Jϕ)).

If the algorithm terminates, independence of the constructed set now directly
follows from the first part of the invariant. Maximality of the constructed inde-
pendent set follows from the second part of the invariant.

We now turn to the time-complexity bound. Markov’s inequality (Theo-

16

Thomas Nowak Lecture 12: Distributed Algorithms I

rem 11.5) with a = 3|Eϕ−1|/4 and Lemma 12.1 gives:

P

(
|Eϕ| ≥

3

4
|Eϕ−1|

)
≤ 2

3
⇒ P

(
|Eϕ| <

3

4
|Eϕ−1|

)
≥ 1

3

Let us call phase ϕ a success if |Eϕ| < 3
4
|Eϕ−1|. Starting from |E0| ≤ n2, we

have |Eϕ| < 1, i.e., Eϕ = ∅ after we have had at least

s >
2

log 4
3

logn = c logn

successes. If Eϕ = ∅, then the algorithm terminates in phase ϕ+ 1 at the latest.
Now, using the Chernoff bound (Theorem 11.1) for d logn coin flips with success
probability 1/3 gives

P
(
E⌊d logn⌋ ̸= ∅

)
≤ P (s ≤ c logn) ≤ e−α logn =

1

nα

where α = δ2/6 and 1 − δ = 3c/d. In particular, for a given α > 0 we can find
an appropriate d.

The time complexity of LubyMIS is asymptotically almost optimal, as there is a

lower bound of Ω
(√

logn/ log logn
)
, even if UIDs are allowed.

12.4 Coloring of Paths

We want to color a path graph with ∆+1 = 3 colors. Formally, we give every process
a local color variable that can take the values 1, 2, or 3. Initially, the variables are
initialized to null. The goal is to have neighboring nodes pick different colors. We
assume no knowledge of the number n of processes, but do assume UIDs. We will
study three different algorithms for this problem.

The first algorithm, which we call LocalLeader, has processes exchange their colors
and UIDs. Undecided processes then decide whether they are a local leader, i.e.,
whether their UID is larger than those of its undecided neighbors. A local leader then
picks an arbitrary color that has not yet been picked by a neighbor.

Theorem 12.3. The LocalLeader algorithm constructs a 3-coloring of a path of
length n in O(n) rounds.

Proof. Correctness follows from a simple invariant. For the time complexity, we
note that, before termination, there is at least one local leader.

This bound is asymptotically tight: in the case of increasing UIDs along the path,
the LocalLeader algorithm takes Ω(n) rounds.

The second algorithm, which we call RandomColor, has every undecided process
pick a random color and send it to its neighbors. Then, if the received colors are
locally consistent, it adopts its current color definitely.

Theorem 12.4. The RandomColor algorithm constructs a 3-coloring of a path of
length n in O(logn) rounds with high probability.

17

Thomas Nowak Lecture 12: Distributed Algorithms I

Proof. The correctness of the algorithm again follows from a simple invariant.
For the time-complexity bound, we note that every process has a probability of
at least 1/3 to pick a color in every round in which it is active. By an application
of the Chernoff bound, we conclude that every process pick a color in O(logn)
rounds with high probability. An application of the union bound now concludes
the proof.

The third algorithm, which we call IDReduction, starts with a large set of colors,
which it then reduces over time until only three are left. The initial, large, set of
colors is the set of UIDs. We can allow the UIDs to be very large positive integers; for
simplicity we assume that they are bounded by a polynomial in n. Then, each process
sends its current color to its right neighbor. (We do need to assume that our path is
directed for now.) It then chooses a new color equal to 2i+ b where i is the position of
the first bit where the two IDs differ, and b is the bit of its own color at that position.
This can reduce the number of colors to at most 6, since 7 is the smallest positive
integer m for which 2 log2 m+ 1 < m We then use the LocalLeader algorithm to find
a 3-coloring in 6 − 3 = 3 more rounds. In fact, we didn’t need globally unique IDs,
but only locally unique ones.

Theorem 12.5. The IDReduction algorithm constructs a 3-coloring of a directed
path of length n in O(log∗ n) rounds.

Proof. For correctness, we prove the invariant of the first phase of the algorithm
that the IDs form a fr(N) coloring at the end of round r ≥ 1, where f(m) =
2 log2 m+ 1 and N is the largest UID, which is ≤ nk for some k by assumption.
For the induction step, we assume by contradiction that 2i+ b = 2i′ + b′ for the
new colors of two neighbors in the path. We then must have b = b′ and i = i′.
In particular, i is the position of the first bit in which the old IDs differed. But
since they did differ, we have b ̸= b′, a contradiction.

The time complexity bound immediately follows from the invariant at round
number r = O(log∗ n).

18

Thomas Nowak Lecture 13: Distributed Algorithms II

May 5, 2025

Lecture 13: Distributed Algorithms II

After having studied synchronous systems, we now turn our attention to asynchronous
systems, in which we don’t have a common time base. There are two main reasons for
asynchronous models: when some processes or messages can be very slow, e.g., when
modeling the Internet, and when some processes or messages can be very quick and
we don’t want to wait for the slowest one.

13.1 Modeling: Asynchronous Message Passing

A configuration is a collection of one local state for each process and the state of the
communication system. In our case, the state of the communication system is the
multiset of messages that were sent but not yet received. A message is a pair (p,m)
of a process p and a message value m ∈ M .

Computational steps of processes now happen in a possibly non-synchronous man-
ner. Each step of a process includes: the reception of one or zero messages, a local
state change, and the sending of a set of messages to its neighbors. Contrary to the
synchronous model, local steps thus proceed in a receive–compute–send manner. A
step of process p is triggered by an event e = (p,m) where m ∈ M ∪ {⊥}. If m = ⊥,
then no message is received by process p in the step. Otherwise, process p can read
the message contents and have its state transition depend on it. The message (p,m)
is then removed from the set of in-transit messages and the set of messages sent by p
in the step is added to it. Given a configuration C and an event e = (p,m) where
either m = ⊥ or (p,m) is an in-transit message, then we can apply the event e to
configuration C and determine the successor configuration e(C). Formally, for the
description of the system, we need:

• a directed or undirected graph G = (V,E)

• a message alphabet M with ⊥ ̸∈ M

• for every process p ∈ V :

– a set Statesp of local states

– a nonempty set Startp ⊆ Statesp of initial states

– a state-transition function Transp : Statesp × (M ∪ {⊥}) → Statesp

– a message-generating function Msgsp : Statesp → 2Outp ×M

An execution is a sequence of configurations such that every process starts in one
of its initial states and each successor configuration is the result of the application of
an applicable event. An execution is admissible if:

• No message is received by p more often than it was previously sent to p. (Safety)

• Every message is eventually received. (Communication liveness)

• Every process takes infinitely many steps. (Process liveness)

We would want our algorithms to be well-behaved in all admissible executions. In the
synchronous model, there was a single execution for each initial configuration. This is
now very different in the asynchronous model: the number of admissible executions is
always uncountable if |V | ≥ 2. Due to this non-determinism, people often find it useful
to think about algorithm design as a two-player game: first the algorithm designer

19

Thomas Nowak Lecture 13: Distributed Algorithms II

presents the algorithm, then the adversary tries to find an admissible execution in
which the algorithm misbehaves. People are also sometimes tempted to convert the
non-determinism into a probabilistic choice. However, due to the difficulty of coming
up with realistic probability distributions for message-delivery and scheduling choices,
this only makes sense in very specific cases.

Message complexity is measured the same way as in synchronous systems: by
counting the total number of messages sent. It is not immediately obvious how to
define time complexity in an asynchronous system, however. The approach that is
usually taken is to add real times in R+ to each configuration in each admissible
execution in a nondecreasing fashion, with the additional constraints that the initial
configuration is at time 0 and that the real-time difference between process activations,
as well as a message send and its reception, is at most 1. The time complexity is then
defined as the supremum of all real times of the desired event when real-time tagging
according to the above rules.

13.2 Breadth-First Search

We return to the first problem that we studied for synchronous message passing—the
construction of a BFS tree—and see whether and how we can solve it in asynchronous
systems. As in Section 12.2, we assume an undirected connected graph G and the
existence of a leader node p0.

We can’t use the SynchBFS algorithm directly in an asynchronous system because
it relied on the fact that, after d rounds, all processes at distance at most d from p0
received a search message. There is no way to make this time-based property work in
an asynchronous system. We will thus need to pack some distance information into
the messages that we send. One possibility is to send our current distance from p0 to
our neighbors and have them update their parent variable to us if we can offer them
a shorter path than they currently have, akin to the Bellman–Ford algorithm.

This leads us to the definition of the AsynchBFS algorithm: Every process main-
tains a parent and a distance variable. Initially, all processes except p0 have parent
equal null and distance equal +∞. The leader process p0 initializes parent to itself
and distance to 0. In the first step of p0, it sends a message with content ‘0’ to all its
neighbors. Upon reception of a message, each process compares the received value m
to its current distance d. If m + 1 < d, then it updates its parent variable to the
process from which it received the value m and its distance to m + 1. It then sends
this new distance to all neighbors.

Theorem 13.1. The AsynchBFS algorithm constructs a BFS tree in O(diam(G))
time and sends O(n · |E|) messages.

Proof. Denote by distp the value of the distance variable at process p. For cor-
rectness of the constructed tree, we can show the following invariants:

1. If distp < +∞, then distp is the length of some path from p0 to p.

2. Every message sent by process p is the length of some path from p0 to p.

3. For every edge {p, q} ∈ E, either distq ≤ distp+1 or process p has sent a
message with content distp to q.

The time bound follows from invariant (3) since it implies that, after time dp,

20

Thomas Nowak Lecture 13: Distributed Algorithms II

we have distp = dp where d is the distance of p from p0. The message-complexity
bound follows from the fact that every process sends at most n different values,
since there are at most n possible distances.

We proved that the AsynchBFS algorithm stabilizes to a BFS tree, but we have
not discussed how to make processes decide and terminate in finite time. This can be
achieved by adding acknowledgment messages and propagating a termination signal
to the leader process once the exploration of all neighbors is done. The bookkeeping
involved in this is a bit tedious, but it can be done in the same asymptotic complexity.

13.3 Modeling: Process Faults

One of the fundamental reasons for distribution is fault-tolerance. That is, we want to
have our system function even if some of its components fail. Faults come in all kinds
of varieties. For now, we will focus on crash faults, i.e., having process stop taking
steps during executions. These faults are difficult to tolerate in asynchronous systems,
since it can be impossible to distinguish a slow from a crashed process.

To every execution, we associate a set F of faulty processes with |F | ≤ f such
that:

• No message is received by p more often than it was previously sent to p. (Safety)

• Every message sent to a non-faulty process is eventually received. (Communi-
cation liveness)

• Every non-faulty process takes infinitely many steps. (Process liveness)

We assume that F is minimal with this property. That is, we do not flag a process
faulty if it takes infinitely many steps and receives all messages sent to it.

13.4 Impossibility of Consensus in Asynchronous Systems
with Process Faults

It turns out that a large class of problems are unsolvable in asynchronous systems
with process faults, even for complete graphs G, which we assume in the following.
A particularly striking example is the consensus problem. In the consensus problem,
every process starts with an initial value vp ∈ {0, 1}. We want all processes to decide on
a common value. For this, we equip every process with a write-once decision variable.
In every execution of a consensus algorithm, we require the following three properties:

• No two decision values are different. (Agreement)

• If all initial values are the same, then this value is the only possible decision
value. (Validity)

• All non-faulty processes decide. (Termination)

We start with a general lemma about asynchronous systems. For its formulation,
we extend the application of an event to sequences of events, which we call schedules.
If a schedule σ is applicable to a configuration C, then we write σ(C) for the resulting
configuration if σ is finite and for the resulting execution postfix if σ is infinite.

Lemma 13.1. If σ1 and σ2 are applicable to configuration C and the sets of
processes taking steps in σ1 and σ2 are disjoint, then:

1. σ2 is applicable to σ1(C)

21

Thomas Nowak Lecture 13: Distributed Algorithms II

2. σ1 is applicable to σ2(C)

3. σ2(σ1(C)) = σ1(σ2(C))

For the analysis of executions of consensus algorithms, we introduce the notion
of valency of a configuration. A configuration C is 0-valent if all executions that
contain C decide 0, and 1-valent if all execution that contain C decide 1. In this case,
we say that C is univalent. A configuration that is not univalent is bivalent.

Our goal is to construct, for every algorithm, an admissible execution in which
processes can’t decide. For that, we construct an execution whose configurations are
all bivalent. We start with the initial configuration:

Lemma 13.2. There is a bivalent initial configuration.

Proof. Without loss of generality, assume V = {1, 2, . . . , n}. We consider the
initial configurations Ik in which all processes p ≤ k have initial value 1 and all
processes p > k have initial value 0. By validity, I0 is 0-valent and In is 1-valent.

Assume by contradiction that all initial configurations are either 0-valent
or 1-valent. Then there must be some k such that Ik−1 is 0-valent and Ik is
1-valent. Take any admissible infinite schedule σ that is applicable to Ik−1 in
which process k doesn’t take any steps. Then, since Ik−1 is 0-valent, the decision
value in execution σ(Ik−1) is 0.

Now, since the only difference between Ik−1 and Ik is the local state of
process k and process k doesn’t participate in schedule σ, the same schedule is
also applicable to Ik. Furthermore, the only difference in the executions σ(Ik−1)
and σ(Ik) is the local state of process k. Hence, the decision values must be the
same in both executions. But then σ(Ik) decides 0, which is in contradiction
to Ik being 1-valent.

For the inductive construction of the bivalent execution, we need the following
technical lemma:

Lemma 13.3. Let C be a bivalent configuration and let e = (p,m) be an event
applicable to C. If C is the set of configurations reachable from C without
applying e and D = {e(E) | E ∈ C and e is applicable to E}, then D contains a
bivalent configuration.

Proof. Assume by contradiction that there are no bivalent configurations in D.
The event e is applicable to all configurations in C. This is obvious if m = ⊥.

If m ̸= ⊥, then the message m is still in transit to process p in configuration
E ∈ C, and can thus be received by process p.

We next argue that there is a 0-valent and a 1-valent configuration in D.
Let Ev be a v-valent configuration reachable from C for v ∈ {0, 1}. Both E0

and E1 exist since C is bivalent. If Ev ∈ C, then set Fv = e(Ev) ∈ D. If Ev ̸∈ C,
then Ev has a predecessor configuration for which e was applied, so Fv ∈ D.

Now, call two configuration neighbors if one is a direct successor of the other.
Since every D ∈ D is of the form D = e(C) with C ∈ C, C is connected with
respect to the neighbor relation, and C is bivalent, there are two neighbors
C0, C1 ∈ C such that D0 = e(C0) is 0-valent and D1 = e(C1) is 1-valent. Without
loss of generality, let C1 = e′(C0) where e′ = (p′,m′). We distinguish two cases:

22

Thomas Nowak Lecture 13: Distributed Algorithms II

1. If p′ ̸= p, then D1 = e(D0) by Lemma 13.1. This is a contradiction to the
fact that D0 and D1 have opposite valencies.

2. If p′ = p, then let σ be any finite schedule in which p doesn’t take any steps
and for which all non-p processes have decided in configuration A = σ(C0).
By Lemma 13.1, the schedule σ is also applicable to the configurations C1,
D0, and D1. Moreover, e(A) = e(σ(C0)) = σ(e(C0)) = σ(D0) and
e(e′(A)) = e(e′(σ(C0))) = σ(e(e′(C0))) = σ(e(C1)) = σ(D1). Since D0

and D1 have opposite valencies, the configuration A is a bivalent, a con-
tradiction to the fact that some process has already decided in A.

We can now conclude:

Theorem 13.2. There is no consensus algorithm in asynchronous message passing
with f ≥ 1 crash faults.

Proof. Assume by contradiction that there is a consensus algorithm.
By Lemma 13.2, there is a bivalent initial configuration C0. From this initial

configuration, we construct an execution in phase. The configuration at the end
of each phase will be bivalent by construction. We then show that the constructed
execution is admissible, deriving the desired contradiction.

For constructing the phases, we maintain a queue of processes. Initially, all
processes are in the queue in arbitrary order. A phase ends when the process
at the head of the queue receives its oldest message that was in transit at the
start of the phase. If no such message exists, the phase ends when it takes its
first step in the phase. The process is then moved to the end of the queue. Let
e = (p,m) be the event that ends the current phase. By Lemma 13.3, we can
end the current phase in a bivalent configuration.

Since every phase contains at least one step, this leads to an infinite execu-
tion of the algorithm. By construction, no process can ever decide, since there
are bivalent configurations arbitrarily late in the execution. Furthermore, ev-
ery message sent is eventually received by construction of the phases. This is a
contradiction to the fact that the algorithm decides in every admissible execu-
tion.

13.5 Asynchronous Rounds

The proof of Theorem 13.2 is kind of tricky in that we needed to make sure that
the constructed execution was admissible. The hard part about that is the fact that
validity of a liveness condition is not a local problem of the configurations; we can only
decide it for infinite executions. In general, reasoning about liveness properties is hard,
which is why there has been a push towards models that capture important aspects,
like asynchrony, but which do not have liveness conditions, only safety conditions.

For asynchronous message passing with crash faults, this often comes in the form
of asynchronous rounds. These are rounds constructed in an asynchronous system.
Every process sends its round-r message to all other processes and proceeds to the
next round r + 1 when it has received n − f messages (including its own). Waiting
for more than n− f messages might block the process, since there could be f process
that do not send a round-r message; so this choice of parameter is optimal.

It is not clear why one would want to construct asynchronous rounds; whether
they are useful. If one looks at algorithms in asynchronous models, however, it is

23

Thomas Nowak Lecture 13: Distributed Algorithms II

exceedingly rare to find one that does not proceed in rounds.
With the above construction like this, we get a Heard-Of set HOp(r) for every

round r and every process p. They satisfy the following two properties:

1. p ∈ HOp(r)

2. |HOp(r)| ≥ n− f

Note, however, that no stability from one round to next exists: processes whose mes-
sages are slow in one round can be fast in the next. The Heard-Of sets of a given
round describe a Heard-Of graph HO, which is the directed graph on V such that
Inp = HOp.

Since the Heard-Of model can be implemented in asynchronous message passing,
the impossibility result of Theorem 13.2 also implies impossibility in the above Heard-
Of model. There is, however, a much easier direct proof of this fact:

Theorem 13.3. There is no consensus algorithm in the f -receive-omission Heard-
Of model if f ≥ 1.

Proof. The existence of a bivalent initial configuration follows just like in the
proof of Lemma 13.2, by silencing one process.

Let us write HO ∼ HO′ if they only differ in the Heard-Of set of a single
process. In this case, it is impossible to have the resulting configurations be of
opposite valencies: If HO(C) is 0-valent and HO′(C) is 1-valent, then we can
choose a schedule σ in which the single process that has a possibly different local
state in HO(C) and HO′(C) is forever silenced. So all other processes decide the
same value in both executions, so both 0 and 1, a contradiction.

Since the set of Heard-Of graphs is connected with respect to the relation∼, it
is impossible to have a bivalent configurations whose successors are all univalent.
There hence is an infinite executions in which all configurations are bivalent, a
contradiction.

24

Thomas Nowak Lecture 14: Distributed Algorithms III

May 19, 2025

Lecture 14: Distributed Algorithms III

We have seen that consensus is impossible in asynchronous systems with process faults.
We now turn to the question of where to go from here. Is it just too hard to achieve
consensus? Is the model too unrealistic to capture practical systems? There is, of
course a non-trivial modeling question that has no definitive answer as of yet. But it
also turns out that consensus can be achieved if we relax the problem definition just a
bit. In what follows, we assume an upper bound of f < n/2 on the number of crashed
processes in each execution. If f ≥ n/2 crashes are possible, then the system can be
disconnected and many reasonable forms of consensus become impossible.

14.1 Approximate Consensus

We first study what happens if we relax the Agreement condition by just a bit:

• For any two decision values yp and yq, we have |yp − yq| ≤ ε. (ε-Agreement)

It turns out that not only this approximate consensus is solvable in asynchronous
systems, it is solvable with a very easy class of algorithms: An averaging algorithm is
one that updates its value to some average of the n− f received values in each round.
This guarantees that the new value is inside the convex hull of the set of received
values.

Let α ∈ [0, 1]. We call an averaging algorithm α-safe if the new value doesn’t
go too close to the boundary of the convex hull of received values: the new value yp
satisfies m + α∆ ≤ yp ≤ M − α∆ where m and M are the minimal and maximal
received values, and ∆ = M −m. Many averaging algorithms are α-safe:

Lemma 14.1. Every averaging algorithm with weights ≥ α is α-safe.

Proof. Let x1, x2, . . . , xk be the values received by process p in round r. Assume
that these values are ordered non-decreasingly, i.e., x1 = m is the minimal and
xk = M is the maximal value. Then:

yp =

k∑
i=1

ai · xi ≤ αm+ (1− α)M = M − α∆

We show yp ≥ m+ α∆ in the same way.

Denote by ∆r the maximum distance between values at the end of round r. Initially
we have ∆0 ≤ 1 and we achieved ε-Agreement when ∆r ≤ ε. It would be convenient
if we had a contraction ratio β < 1 by which ∆r shrinks from round to round: ∆r ≤
β∆r−1 for all rounds r ≥ 1. This is not too much to hope for, as we will see in the
next lemma. It uses a fundamental fact about asynchronous rounds with f < n/2, the
non-split property: for any pair of non-crashed processes and any round, there exists
one process that both hear from in that round. The common process that both hear
from can change from round to round and it need not be the same for all pairs of
processes.

Lemma 14.2. Every α-safe averaging algorithm has a contraction ratio of 1− α.

25

Thomas Nowak Lecture 14: Distributed Algorithms III

Proof. Denote by Ip = [mp,Mp] the interval spanned by the values received by
process p in the current round r. Let p and q be two processes and yp and yq
their values at the end of the round. Without loss of generality let mp ≤ mq.
Then, because of the non-split property, we have mq ≤ Mp.

For process p, we calculate

yp ≥ mp + α(Mp −mp) ≥ (1− α)mp + αmq ≥ (1− α)m+ αmq

and

yq ≤ Mq − α(Mq −mq) ≤ (1− α)Mq + αmq ≤ (1− α)M + αmq ,

where m and M are the minimal and maximal values of non-crashed processes
at the start of the round, from which follows that yq − yp ≤ (1− α)(M −m) =
(1− α)∆r−1. Similarly, for process q, we get

yp ≤ Mp − α(Mp −mp) ≤ (1− α)Mp + αmp ≤ (1− α)M + αmq

and

yq ≥ mq + α(Mq −mq) ≥ (1− α)mq + αMq ≥ (1− α)m+ αmq ,

from which follows that yp− yq ≤ (1−α)(M −m) = (1−α)∆r−1. We thus have
|yp − yp| ≤ (1 − α)∆r−1 for all p and q, which implies that ∆r ≤ (1 − α)∆r−1

and concludes the proof.

We can now conclude that all α-safe averaging algorithms solve approximate con-
sensus:

Theorem 14.1. Every α-safe algorithm achieves ε-agreement in
⌈
log1/(1−α)

∆
ε

⌉
rounds.

Proof. By Lemma 14.2, we have:

∆r ≤ (1− α)r∆

Thus, whenever r ≥ log1/(1−α)
∆
ε
, we have

∆r ≤ elog1/(1−α)
∆
ε
·log(1−α)∆ = e− log ∆

ε ∆ = ε ,

which concludes the proof.

We talked about classes of averaging algorithms, which all solve approximate con-
sensus, but which specific one should we choose? A natural choice is the algorithm
that chooses the unweighted average of all received values. By Lemma 14.1, this al-
gorithm is (1 − 1/n)-safe. Another choice, which turns out to be time-optimal in
the worst case, is the algorithm that maximizes the safety parameter α: The Mid-
point algorithm chooses the midpoint of the convex hull of received values and has the
maximum possible safety parameter α = 1/2.

26

Thomas Nowak Lecture 14: Distributed Algorithms III

14.2 Randomized Consensus

Allowing randomization also allows to circumvent consensus impossibility. Multiple
randomized relaxations of consensus are possible. The most useful one still requires
Agreement and Validity to hold for all executions, but requires only almost sure Ter-
mination, i.e., with probability 1.

The BenOr algorithm is one of the simplest randomized consensus algorithms. It
proceeds in phases of two rounds each:

1. Send vp to all other processes. Then, if all received values are equal to v, then
set wp = v, otherwise set wp = ⊥.

2. Send wp to all other processes. Then, if all received values are equal to v ∈ {0, 1},
then set vp = v and decide v. Otherwise, if one received value is v ̸= ⊥, then
set vp = v. Otherwise, set vp to a random value in {0, 1}.

One of the key insights into why this algorithm works is the fact that no two
different values can remain after the first round:

Lemma 14.3. In any phase, if wp ̸= ⊥ and wq ̸= ⊥, then wp = wq.

Proof. Assume wp ̸= wq. Then there exist sets P and Q of processes with
|P | ≥ n − f and |Q| ≥ n − f with vp = wp for all p ∈ P and vq = wq for all
q ∈ Q at the start of the phase. But this is impossible because then the total
number of processes is at least |P ∪ Q| = |P | + |Q| ≥ 2(n − f) > 2n

2
= n, a

contradiction.

The rest of the correctness proof is now in reach:

Theorem 14.2. The BenOr algorithm solves randomized consensus in expected
time O(2n).

Proof. We show the three consensus properties: Agreement, Validity, and almost
sure Termination.

We start with Validity. If vp = v for all non-crashed processes at the start of
the first phase, then wp = v at the end of the first round and thus all non-crashed
processes decide v at the end of the second round.

To show Agreement, assume that process p decides value v in phase ϕ, and
assume that ϕ is the first phase in which any process decides. No other processes
can decide a different value in phase ϕ because of Lemma 14.3. Furthermore,
in the second round of phase ϕ, every non-crashed process q receives at least
n − 2f ≥ 1 times the value wp = v. But this means that vq = v at the end of
phase ϕ. All non-crashed processes hence start phase ϕ+ 1 with the same value
vq = v, which leads them to decide v in the second round of phase ϕ + 1 by
Validity and the memoryless nature of the phases.

We now show almost sure Termination and the O(2n) upper bound on the
expected number of phases until decision by all correct processes. At the end of
any phase in which there is one non-crashed processes that has not yet decided,
by Lemma 14.3, all non-crashed processes start the next phase with the same
value vp if all random choices are equal to the unique non-⊥ value wp. The
probability of this happening is at least 1 − 1/2n. The number of phases until

27

Thomas Nowak Lecture 14: Distributed Algorithms III

decision by all correct processes is thus upper-bounded by a geometric random
variable with success probability 1− 1/2n. This concludes the proof.

14.3 Byzantine Processes

The case of process crashes is challenging, but one can and does consider worse than
crash faults. A Byzantine process can behave arbitrarily. This includes crashing, but
also sending wrong messages, sending different wrong messages to different processes,
following the algorithm initially and deviating later, etc. It turns out that both approx-
imate consensus and randomized consensus can still be solved. This of course requires
adapting the Agreement and Validity conditions to only cover correct, non-Byzantine,
processes. It also requires us to lower the fault-tolerance threshold to f < n/3. Many
problems are known to be unsolvable when f ≥ n/3.

We need to employ some tricks to get there, of course. These come in the form
of reliable broadcast and the witness technique, which combine into the following
guarantees in every asynchronous round: every correct process receives at least n− f
messages from other processes and n− f of them are common to all correct processes.
Note that receiving more than n − f messages can actually be a disadvantage here,
because they can be from Byzantine processes.

For approximate consensus, we will need to throw away the f smallest and the f
largest received values. Otherwise, a Byzantine process can make us exit the convex
hull of values of correct processes. The only critical point is the non-split property of
the resulting intervals. But, after trimming, there are at least n−f −2f = n−3f ≥ 1
values in common at all processes. The intervals thus intersect.

For randomized consensus, we will need to introduce some thresholds to guard
the rules for setting wp and vp. For setting wp = v in the first round of a phase, we
place the condition that all but f received values are equal to v. For deciding in the
second round of a phase, a value needs to make up all but f of the received values.
For adopting a value, it needs to have been received at least f + 1 times.

The analog of Lemma 14.3 is true: Writing V for the number of times that value v
was received, we have V = Vc + Vr where Vc is the number of times that v appears
in the set of k ≥ n − f common values received by all correct processes. We have
Vr ≤ m− k where m is the total number of received values. But then Vc = V − Vr ≥
(m− f)− (m− k) = k− f = k/2+ (k− 2f)/2 ≥ k/2+ (n− 3f)/2 > k/2, which shows
that there can be only one such value v.

A value that has been decided is adopted by all other correct processes in the same
phase: For the deciding process, we have shown Vc ≥ k − f in the above calculation.
Now, for the number V ′ of times that any other correct process has received value v,
we have V ′ ≥ Vc ≥ k − f ≥ n − 2f > f . That process hence adopts value v in the
same phase.

28

	Lecture 10: Algorithms and Probability I
	Expected Runtime of Quicksort
	The Secretary Problem
	The Online Paging Problem

	Lecture 11: Algorithms and Probability II
	Skip Lists
	Universal Hashing

	Lecture 12: Distributed Algorithms I
	Modeling: Synchronous Message Passing
	Breadth-First Search
	Maximal Independent Set
	Coloring of Paths

	Lecture 13: Distributed Algorithms II
	Modeling: Asynchronous Message Passing
	Breadth-First Search
	Modeling: Process Faults
	Impossibility of Consensus in Asynchronous Systems with Process Faults
	Asynchronous Rounds

	Lecture 14: Distributed Algorithms III
	Approximate Consensus
	Randomized Consensus
	Byzantine Processes

